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PREFACE

Part of the Project RAND research program consists of

basic supporting studies in mathematics. This includes the

study of combinatorial problems, with applications to

communication networks, switching circuits, error-detecting

and error-correcting codes, etc.

A number of these combinatorial problems can be
formulated in terms of matrices made up of columns of zeros

and ones. In the present Memorandum the authors introduce

and study the notion of a-width for such a matrix.

The work of the coauthor, Dr. Ryser, was supported in

part by the Office of Ordnance Research.



RM-289 6
V

SUMMARY

V

Let A be an m by n (0, 1)-matrix, and suppose that E

is an m by e submatrix of A having the property that each row

of E contains at least a l's. The e columns of E are said

to form an (-set of representatives for A. Let e(a) be the

minimal number of columns of A that form an a-set of representa-

tives. The integer E(a) is called the o-width of A. If A

has a-width e(a), select an m by e(a) submatrix E of A having

the property that the number 6(a) of rows of E containing

exactly a l's is as small as possible. The integer 8(a) is

called the a-height of A.

This paper studies the minimal a-width Z(a), the minimum

being taken over the class (rof all (0, l)-matrices having

specified row and column sums. A canonical form is developed

for a matrix of a-width i(a) that leads to explicit formulas

for both i(a) and f(a), the minimal c-height of all matrices

AZ(,) in the class Ll.
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WIDTHS AND HEIGHTS OF (O, i )-MATRICES

1. INTRODUCTION

A number of combinator. al problems may be regarded as

particular instances of the following rather general situation.

Given a set X composed of n elements x1 0 x2 , .. , xn , and

m subsets X1, X2 , ... , X of X, find a minimal system of

representatives for X1, X2, Goes XM . That is, single out a

subset X* of X such that Xf n X* is nonempty for i - 1, 2, ... , ms

and no subset of X containing fewer elements than X* has this

property. To illustrate, each of the following can be thought

of in these terms.

(a) Find the smallest number of nodes that touch all arcs

in a linear graph. Thus the sets X1, X2, ... , XM are the arcs

of the graph, each set consisting of two elements: its end

nodes. A famous example of this is the eight-queens chessboard

problem. Here one forms a graph by connecting two cells of the

board if a queen can move from one cell to the other. Then the

complement of a minimal system of cells that touch all arcs

represents positions in which the maximal number of queens can

be placed so that no two attack each other.

(b) Given two distinct nodes in a graph, find a set of

arcs, minimal in number, that cuts all chains that lead from

one node to the other. Here the elements x1, x 2 , ... , xn are

the arcs of the graph, and the sets X1, X2 , ... , Xm are all

Chains that Join the two given nodes. A similar problem is to
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find the smallest number of arcs that cut all directed cycles

in a directed graph.

(c) Given the truth table for a proposition letter formula

F in r proposition letters pl' P2 0 **a# Pr' find a disjunctive

normal form of F that has the smallest number of terms. That

this problem, which arises, for example, in the design of

switching circuits, falls in the category of minimal set repre-

sentative problems can be seen as follows: As elements of the

fundamental set X, admit all terms that have one of the forms

qi' qiq, qiqjqk ..., qlq 2 ... n, where qi is either p. or

its negation , p and that take the value t (true) only if

F(pl' P2 0 .'' Pr) does also for all values of the proposition

letters pI, P2 0 "'" Pr" In other words, a t in the truth

table for an admissible term implies a t in the same position

for the F truth table. The subsets to be represented are

formed by grouping together, for each assignment of values

to Pls P2 0 *** Pr that makes F(pl, P20 Pr ) true, all of the

admissible terms that are also true for this assignment of

values. For example# suppose that F(p1, P2 0 P3) is given by

the truth table

P1  P2  P3 F

f f f f
f f t f
f t f t
r t t f
t f f t
t f t t
t t f t
t t t fr
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Then the elements of X are

and the four subsets to be represented are

x 2" 0Pl F2' PlF P- F23'

x3" [plp 2 , plFL93p ,

X4- 'PI530 P2 P3 Pp2F3] "

A minimal system of representatives is given by selecting the

terms plp2, p2T3, that is,

F(Plo P2 0 P3 ) P1 2 + P3

and F cannot be represented by a disjunctive normal form having

fewer terms.

Many other combinatorial problems can be viewed as minimal

representative problems. (But doing so is not likely to make

the problem any easier.) Of the three listed above, only one,

so far as we know, might properly be termed solved. This is

the first problem mentioned under (b), above, for which the

max flow-min cut theorem provides a theoretical answer on the

one hand, and for which, on the other hand, an algorithm based

on network-flow considerations can be used to construct, in a

highly efficient manner, a minimal--ut set of arcs for any
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particular graph (2). For undirected graphs the second

problem under (b) is easy, the answer being the cyclomatic

number of the graph, but for directed graphs very little seems

to be known. The problem in this latter form has been proposed

by E. F. Moore (see [14)). Berge Ill has obtained some results

on problem (a), and Roth [91 has studied problems of type (c)

using combinatorial topological methods.

From the computational standpoint, any minimal-set repre-

sentative problem can be put in the form of an integer linear

program, for which Gomory [61 has devised promising algorithms.

Thus, for example, we may take the constraint matrix A - (a i]

for the program to be the incidence matrix of sets vs. elements;

that is, aij - I if xj is in Xi, aij - 0 otherwise. Then the

minimal-set representative problem asks for nonnegative integers

n
w., w2, ..., wn that minimize the linear form Z w over allnJ=l

selections of nonnegative integers satisfying the constraints

n
Z ai wa i , i w i, 2, .... m.

In general, however, the incidence matrix A is much too large

to make such a computation feasible. Sometimes one can obtain

other linear programs that are not so formidable in size, and

in certain cases the program may even be formulated so that

optimal solutions are always integral. This is the situation,

for example, in the first problem listed under (b), above, for

which an appropriate formulation (not in terms of the incidence
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matrix A of chains vs. arcs) can be described that is both

reasonable in size and automatically yields integer answers.

The results of this paper are not aimed at a solution of

the minimal-set representative problem per se, but may be

viewed as providing some information on this problem.

Specifically, we are interested in obtaining bounds on the

minimal number of representatives by allowing the incidence

matrix to vary over all matrices of zeros and ones having the

same row and column sums as the given A, that is, the classO0

generated by A [101. From this standpoint, the present paper

may be regarded as a continuation of [4, 7, 11, 12), in which

other cmbinatorially significant quantities associated with

an incidence matrix A have been so studied.

In order to avoid repeating the cumbersome phrase "the

number of elements in a minimal set of representatives for A."

we call this number simply the "width" of A, or more precisely

the "l-width" of A, since we generalize the problem to a-widths;

that is, we insist that each subset be represented at least

a times. Throughout we let e(a) denote the m-width of a

specified A; i(a) and T(a) then denote, respectively, the

minimum and maximum a-widths taken over all A in L'. The

problem of determining !(a) in terms of the given row and

column sums that characterize 0 is completely solved in the

sequel, but our efforts to pin down 7(a) have so far been
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unsuccessful. 1  In solving the Z(a) problem, an auxiliary

notion, the "o-height" of A, turns out to be important.

This, and the other notions introduced informally above,

will be defined more precisely in Sec. 1.

Throughout the paper we use purely combinatorial methods

in establishing results. It should be mentioned, however,

that the formula obtained for Z(a) can also be derived by

means of network flows and was in fact first obtained in

this way. From the viewpoint of flow theory, the function

N(e, e, f) introduced in Sec. 5 can be interpreted as

representing possible minimal-cut capacities in an appropriate

flow network.

2. CONCEPTS AND NOTATION

Let A be a matrix of m rows and n columns and let each

entry of A be 0 or 1. We call A a (0, 1)-matrix of size m

by n. Let the sum of row I of A be denoted by ri and let

the sum of column j of A be denoted by sj. We call

R - (r1 , r2, *.., rm ) the ror-iM vector and

S - (s 1 , s20 ... , sn ) the column--sum vector of A. The vectors

R and S determine a class

(2.1) O(-O((R, S)

ISince the results of this paper were obtained, it has
been shown by one of the authors that a solution to the

T(i) problem would settle the existence question for finite
projective planes. See L13]. Thus the maximal width problem
appears to be considerably deeper and more important than the
minimal width problem.
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consisting of all (O, l)-matrices A of size m by n, with row-

sum vector R and column-sum vector S. Simple necessary and

sufficient conditions on R and S are available in order that

the class 0( be nonempty 15], £103. Let A be in C and

consider the 2 by 2 submatrices of A of the types

Al ] and A2 - .
0 1 1 0 -

An interchange is a transformation of the elements of A that

changes a minor of type A1 into one of type A2, or vice versa,

and leaves all other elements of A unaltered. The interchange

theorem £103 asserts that if A and A' belong to of , then A

is transformable into A' by interchanges. In our study we

may suppose without loss of generality that Ot is nonempty

and that

(2.2) r, r 2  ... r > 0,

(2.3) 1 82  sn > o.

Such a class is called . Henceforth we take O

to be normalized.

Let a be an integer in the interval

(2 .4) 0 eA a I rm,

and let c be an integer In the interval
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(2.5) 1 K n.

Let A be a matrix in the normalized class O((R, S) and suppose

A has an m by a submatrix E*, each of whose row sums is at

least a. An integer a fulfilling these requirements is said

to be compatible with e in A.

Suppose now that a is positive and compatible with e in

A. If this is the case, then we say that the e columns of

our m by e submatrix E* of A form an a-set of representatives

for the matrix A. Let e(a) be the minimal number of columns

of A that form an o-set of representatives for A. Such a

column set is called a minimal a-set of representatives for A,

and e(a) is called the ak-width of A. The integer a and the

matrix A uniquely determine e(a). We note at the outset that

the a-width e(a) of A is invariant under arbitrary permutations

of the rows and columns of A. However, the a-width of AT, the

transpose of A, may differ drastically from that of A.

Let E* be a submatrix of A of size m by e(a) that yields

a minimal a-set of representatives for A. Let E be the sub-

matrix of E* composed of all the rows of E* that contain

a l's and e(a) - a O's. The matrix E is called a critical

o-submatrix of A. Note that E cannot be empty; this follows

from the fact that if all row sums of E* exceed a, then

deletion of any column of E* yields an o-set of representatives

for A, contradicting the minimality of e(a).
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Theorem 2.1. The matrix A has an a-width e(a) for each

a in the interval 1 K a < r m. A critical a-submatrix E of A

associated with an as-width e(a) contains no zero columns.

Proof. Suppose that a critical o-submatrix E of A

associated with an a-width e(a) contains a zero column. Let

E* be the m by e(a) submatrix of A containing E. The column

of E* containing the 0 column of E may be deleted and this

yields an m by e(a) - I matrix with minimal row sum a. But

this contradicts the minimality of e(a).

Each of the critical a-submatrices E of A must contain

e(a) columns. But the number of rows in the various critical

o&-submatrices need not be fixed. Let E be a critical

a-submatrix containing the minimal number of rows 6(a). The

positive integer 6(a) is called the a-height of A. Both e(a)

and 6(a) are basic invariants of the matrix A. Evidently

(2.6) 6(i) < e(2) < ... < e(rm)a

and by Theorem 2.1,

(2.7) 5(l) >- ,C(1).

Thus far we have discussed for the most part a specified

matrix A in the normalized class 0((R, S). We now turn our

attention to properties of the class Cr(R, 3). Let a and a

be fixed and let a be compatible with E. This means that a

and e are restricted by (2.4) and (2.5). Moreover, there
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exists an A in &((R, S) with an m by e submatrix E* whose

minimal row sum is at least a. Now consider the class of all

m by e submatrices E" of the matrices A in Y(R, S) with the

row sums of E" greater than or equal to a. Let 6" denote

the number of row sums in E" equal to a. The nonnegative

integer 6 equal to the minimum of the integers 8" is called

the multiplicity of a with respect to e. An a compatible with

a may be of multiplicity 0 with respect to e. This will be

the case whenever there exists an m by 6 submatrix E" with

all its row sums greater than a.

Let I 1 a , rm. Then each A in 0((R, S) determines an

a-width e(a), and a is compatible with e(a). For each a let

the minimum of these e(a)'s over all A in LY(R, S) be denoted

by

(2.8) )

Then a is compatible with Z(a) and, by the minimality of

i(a), if 0 > a, then 0 is not compatible with i(a). We call

Z - Z(a) the minimal a-width of the class Cr(R, S). Let

(2.9) 8 -6(Q)

denote the multiplicity of a with respect to Z(a). The

integer a(a) is positive and is equal to the minimum of the

6(a)'s for all matrices A, In OT(R, S) of a-width Z(a). It

is clear that

(2.10) Z(l) < Z(2) < ... < Z(rm)
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and

(2.11)> (.

Similarly for each a let the maximum of the e(c)'s over all A

in 0((R, S) be denoted by

(2.12) 7 = 7(a).

We call F = (a) the maximal a-width of the class O((R, S).

A direct application of the interchange theorem allows us to

prove that if e is an integer in the interval

(2.13)

then there exists a matrix A. in Ot(R, S) of a-width e (see

Sec. 4).

In Sec. 3 we take an a compatible with e and of multi-

plicity 6 with respect to e. Under these conditions we

establish the existence of a (0, 1)-matrix in 0((R, S) with

an unusually simple block decomposition. An application of

this theorem yields matrices of a-width Z and a-height in

OT(R, S), called canonical matrices. Their study in Secs.

4 and 5 leads to simple and explicit formulas for both Z and Jr.

A straightforward construction for a canonical matrix is given

in Sec. 6. Sec. 7 concludes with applications to the special

classes of (0, l)-matrices containing k l's in each row or k l's

in each column.
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3. A 3LOCK DECOMPOSIT 07. THEOREM

Let 0 a . rm and let 1 6 e e n. Let a be compatible

with e and of multiplicity ; with respect to E. We now p rove

the block decomposition theorem that plays a fundamental role

in our subsequent investigations involving Z and .

Theorem 31. Let a be compatible with C and of multi-

plicity 6 with respect to E. Then there exists a matrix A

in the normalized class 0(R, S) of the form

(3.1) A [F *foj

Here E is of size 6 a E with exactly a l's in each row,

M is a matrix of size e by e with a + 1 or more l's in each

row, F is a matrix of size m - (e + C) by e with exactly

a + 1 l's in each row, J is a matrix of I's of size e by f - C,

and 0 is a zero matrix. The degenerate cases e - 0, e + =

6 = 0, f = e, and f = n are not excluded.

Proof. Let A be a matrix in the normalized class 3(J , S)

and let A contain a submatrix E of size m by e with row suc;s

equal to a and the remaining m - 6 row sums > a. Let

"1' 2' "'' . be the column vectors of E . The matrix A is

selected so that the vectors "j. r2' "' 0 are to the left

as far as possible among all matrices A in 0( containinj an

I
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vector of A and suppose that I appears to'the left of Iet ,

where T)t is one of T1, 1120 ... p I." Now the class Of is

normalized, so the column sums of A are nonincreasing. We

apply interchanges involving only the two columns 1 and lIt,
I ! t

and replace TI by 1i, and 1t by Ij t . The column i) is to have

l's in all of the positions in which lI.t has l's. These

interchanges yield a new matrix A in ( . Now columns

1 p * I ' 1t--l' 1t+10 "' I, of A form an m by e submatrix

of A with row sums k a. Moreover, the number of row sums in

this submatrix equal to a is < . Hence the matrix A may be
*

selected so that the m by e submatrix E is confined to the

first e columns.

If 5 - 0, then A is of form (3.1) with e = m, f - E.

Let 6 be positive and suppose that in the first e columns

of A a row vector of E of sum a occurs above a row vector

of E of sum > a. Since the row sums of A are nonincreasing,

we may apply interchanges to A and lower the row vector of E

of sum a. Hence we may obtain a matrix A in the normalized

with the submatrix E of (3.1) in the lower left corner.

We now take this matrix and by interchanges obtain a

matrix of the following form:

(7.2) F1  w x

HrE Y z 0 m

H{ere E is the matrix of (3.1). F I has exactly (a + 1) l's in



each row, M1 has a + 2 or more l's in each row, J is a matrix

of l's, and C0 has at least one 0 in each column. The

matrix 0 in the lower right-hand corner must be a zero matrix,

since otherwise an interchange involving the blocks M1, Co,

E, and 0 contradicts the minimality of 6. (The tacit

assumption that M1 and C0 both appear is unimportant; if this

were not the case, then (3.2) would already be a degenerate

case of (3.1).)

Now let Z be the zero matrix of t columns that appears

in all matrices of the form (3.2) in the normalized class £"

The integer t is to be maximal, but the case t = 0 is not

excluded. Then there exists a matrix of the form (3.2) with

a I in the last column of Y. (Again if Y does not appear,

then (3.2) is a degenerate case of (3.1).) Suppose that a

1 appears in row J of X and that a 0 appears in row j of W.

We can apply an interchange if necessary and assume that a

0 appears in row J and the last column of W. Now an inter-

change involving the 1 in row J of X and the 1 in the last

column of Y places a 1 in 0 or in Z. This contradicts either

the minimality of 5 or the presence of Z in all matrices of

the form (3.2) in 01 . Thus if X contains a 1 in row J,

then row J of W is a row of l's. This means that there exists

a matrix A in the normalized 7 of the for. (3.1).

4. THE 4INIMAL a-,,IDT. Z(c)

Theorem 4.1. Let Z = i(a) be the minim.al a-width of the

norv alized class 7(Ii, .). Let 6 a 6(a) be the r.ultij.11city
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of a with respect to Z(a). Then there exists a matrix A-

of o-width i in O(R, S) of the form

M i

(4.1) AZ- 0

E

Here E is a critical submatrix of AZ of size 5 by Z, M is a

matrix of size e by Z with a + 1 or more l's in each row,

F is a matrix of size m - (e + Z with exactly a + 1

l's in each row, J is a matrix of size e M f - Z consisting

entirely of l's, and 0 is a zero matrix. Each of the first

columns of A- contains more than m - l's. The degenerate

cases e - 01 e + 8 - m, f = , and f = n are not excluded.

Proof. In Theorem 3.1 let e = Z(a) and 6 = 8(a). Then

(3.1) establishes the existence of a matrix A of the form

(4.1). Note that in Theorem 4.1 the integers a, Z, and V are

positive and the degenerate case 6 = 0 of Theorem 3.1 is

excluded. The matrix A- is of a-width Z(a). Each of the

first Z columns of A- contains more than m - 6 l's. For if

this were not the case, we could apply interchanges confined

to the first Z columns of A7 and replace a column of E by 0's;

but this contradicts the minimality of Z.

The special case a - 1 of Theorem 4.1 deserves mention.

A (0, l)-matrix M is maximal [I0) provided that in each row

of M no 0 occurs to the left of a 1. We prove that for a - 1
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the matrices M and F of (4.1) may be selected as maximal

matrices. Let E* be the m by i(i) matrix composed of the

first (l) columns of (4.1). Let the sum of column I of E

be e1 . We minimize e1 by applying interchanges to E . This

means that column I of M and column I of F must be columns

of l's. We cannot have e, = 0, for this contradicts the

minimality of i(l). Let the sum of column 2 of the transformed

6(l) by i(l) E matrix be e2. We minimize e2 by applying

interchanges to the last Z(I) - 1 columns of the transformed E

Thus column 2 of M and column 2 of F must be columns of l's,

and again e2 > 0. But F contains only two l's in each row,

and hence F is the maximal matrix with exactly two l's in each

row. Let the sum of column 3 of the transformed E(1) by

Z(i) E matrix be e3. We minimize e3 by applying interchanges

to the last Z(i) - 2 columns of the transformed E , and

continue this minimizing process until the matrix M is maximal.

Theorem 4.1 is the basis for the simple formula for

Z(a) derived in Sec. 5. Unfortunately, the decomposition (4.1)

does not have an apparent analogue for a matrix A- of maximal

m-width i(a). Indeed, the class generated by the matrix

0. 1o 1 0
(4.2) AW~ 1 0

h 1 2 a
0 0 0 1

has ()-3. columns 1, 2, and 4 intersect a critical
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submatrix of A. But it is not possible to replace A by a

matrix in its class with a critical submatrix in the first three

columns.

The following information on intermediate a-widths

follows without difficulty.

Theorem 4.2. If e is an integer in the interval

(4.3) Z < E <7,

then there exists an A. of a-width e in the normalized class o.

Proof. We show that a single interchange applied to

a matrix Ae of a-width s inO cannot raise the a-width by two

or more. To see this, consider the case in which a matrix A.

of a-width e is transformed by one interchange into a matrix
t

A of o-width e + 2 or more. The matrix A must have a6

critical submatrix E of size 8 by e. It is essential that

the single interchange remove a 1 from the critical submatrix E,

for otherwise we would have a matrix of a-width e or less.

Let the column vectors TIs I12, ... 0l1 of A. intersect the

critical submatrix E. The interchange affects two column

vectors I1t and 71 of A . Here Tht is one of the vectors

Tilt r2 , sees ll., and II is some other column vector of A .- Let
I I

the interchange transform it into 1t and TI into 11 . Then the

e + I columns, i"120 ** ' t ... T in A are an a-set
I

of representatives for A . Hence one interchange can raise

the a-width of A. by at most 1. But by the interchange theorem
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we may transform by interchanges a matrix A- of Q-wLdth

into a matrix A- of o-width . This establishes the e :tnc;

of the matrix A of a-width e.

5. CANONICAL MATRICES

For the normalized class O?(R, S), let

(5.1) tef = re+l + re+ 2 + ... + rm - (s, + s2 + ... + sf) + cC.

Here e and f are integer parameters such that

(5.2) 0 e e m,

(5.3) 0 < f < n.

Let A be in a(R, S) and suppose that

(5.4) A = ]
I* ZI

with W of size e by f. For a (0, l)-matrix Q, let No(Q) deno;c

thc number of O's in Q and let Nl(Q) denote the number of 1's

in Q. Then (5.1) can be rewritten in the form

(5.5) tef = No(W) + N1 (Z).

The invariants tef of O((R, S) are useful in determining the

maximal and minimal trace [12. and the maximal term rank E11?"

of the matrices in M(R. S).

We now define invariants N(c, e, f) of 0 (R, S) that are

Generalizations of (5.1). These invariants turn out to be
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effective in determining the minimal o-width of the matrices

In 0'(R, S). Let

(5.6) N(e,ef) = re+l+r e+2+ . rm-(s+l+se+2+ ..+sf)+e(f-e).

Here C, e, f are integer parameters such that

(5.7) 0 e n,

(5.8) 0 e m,

(59) e < f < n.

Note that

(5.10) N(O, e, f) = tef,

and that for e = O, (5.9) reduces to (5.3). Moreover, (5.1)

and (5.6) imply

(5.11) N(c, e, f) = tef + (1 + s2 + ... +s) -S ce.

Let A be in 0((R, s) and suppose that

(5.12) A=

with X of size m - e by e and Y of size e by f - e. Then,

by (5.6),

(5.13) N(E, e, f) - N1 (X) + No(Y) + N(Z).
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Let A be a matrix in the normalized class, of the form

M J *

S' '(5.14) A M F
- * 0

E

S S L

Here E is a matrix of size 6 by e with exactly a l's in

each row, M is a matrix of size e by e with a + I or more

l's in each row, F is a matrix of size m - (e + 6') by c

with exactly (a + 1) l's in each row, J is a matrix of l's
I S

of size e by f - e , and 0 is a zero matrix. Each of the

first e columns of A contains more than m - 6 l's. We
S I

require that 6 and e > 0, but the degenerate cases

e =O, e + 6 m, f e ,and f =n are not excluded.

A matrix fulfilling these requirements is called canonical,

and e and f are said to be decomposition nurnbers for A

The decomposition numbers for a specified A need not be

unique.

It is clear that the matrix Az of Theorc::. 4.1 is

canonical, with e = Z, 6 = W. The e and f of 2'ihoorem 4.1

are decomposition numbers for A .
I S

Theorem 5.1. The e of the canonical iLatrix A of (5.ii1)
is equal to the first nonneative integer e 3uchaLt

(5.15) N(e, e, f) > a(m - e)

for all integer.parameters e and f restricted by (') ari_] . .).



-21-

Proof. Let e be fixed and restricted by (5.7), and

suppose that for some e and f restricted by (5.8) and (5.9),

we have

(5.16) N(e, e, f) < a(m - e).

Then it follows that

(5.17) e < C.

To see this, suppose that (5.16) holds and that e > 6 . Then

the first e columns of A contain at least a l's in each row.

But then by (5.13) the e. e, and f of (5.16) satisfy

N(e, e, f) k c(m - e), and this contradicts (5.16). Hence

(5.16) implies (5.17).

Let e be fixed and restricted by (5.7), and suppose that,

for each e and f restricted by (5.8) and (5.9),

(5.18) N(e, e, f) 2 a(m - e).

Then we have

(5.19) £ C.

To see this, suppose that (5.18) holds and that e < c'. Then
I I

for the decomposition numbers e and f of (5.14), we have

(5.20) 0Ke <m

and

(5.21) a < c' K K n.
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By (5.13), we obtain

(5.22) N(e, e', f') - N(e , e, f) + No(T) -NI(O)

where T denotes the submatrix formed by the intersection of

rows 1, 2, ... , e and columns e+l, e+2, ... , e of A , and U
I I

the intersection of rows e +1, e +2, ... , m and columns
I U I

e+l, e+2, ... , e of A . Now each of the first e columns of
I I6

A contains more than m 6 l's. Hence we have

(5.23) NI(U) - NO(T) + e'(e - c) =

se+ l + sc+ 2 + ... + s' > (m - 6)(C - e),

and

(5.24) N1(U) - NO(T) > m - (e' + 6').

Since we also have

(5.25) N(e , e, f) = (a + l)(m - e') - 6,

it follows from (5.22), (5.25), and (5.24) that

(5.26) N(e, e', f') - (a + 1)(m - e') - 6 + NO(T) - N4(U)

< (a + 1)(m - e') 6 -m + e' + 6' - a(m-e').

But this contradicts (5.18). Hence (5.18) Implies (5.19) and

this proves Theorem 5.1.
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Theorem 5.2. Let Z be the minimal o-width of the

normalized class 0((R, S). The e of the canonical matrix A

of (5 .14) is Z, and Z is the first nonnegative integer e such

that

(5.27) N(e, e, f) > a(m - e)

for all integer parameters e and f restricted Py (5.8) and (5.9).

Proof. This follows from Theorem 5.1 and the fact that

the matrix A- of Theorem 4.1 is canonical.

Theorem 5.2 provides a simple computation for Z. One

can successively calculate each array N(e, e, f) + ae,

N(41, e. f) + ae, ... for appropriate e and f, where t is

the first e such that s1 + s2 + ... + e > m, and stop

when all entries of the array are at least as great as am.

The starting value 9 in the calculation clearly is a lower

bound for i.

The next theorem shows that all pairs of decomposition
I I

numbers e , f can be singled out from the array

N(Z-l, e, f) + ae.
I

Theorem 5.3. Let A be the canonical matrix of ( 5 .14),
I -

with C - E. Let

(5.28) - min N(I-l, e, f) + ao),

where OeK m and i- I Kfen. Then



I I I

(5.29) - N(Z-, e , f) + ae

I I I

if and only if e and f are decomposition numbers for Al.

I I

Proof. Let e and f be decomposition numbers for At.
- I

Then 0 1 e m and Z lf r n. We consider first the case

in which e e and Z f K n. Then

(5.30) N(Z-1, e', r')

N(Z-l, e, f) + No(T) - N1 (U) - No(V) - N1 (W).

I
Here T is the intersection of rows e+l, e+2, ... , e and

IIcolumnn Z of At. U is the intersection of rows e+l, e+2, ... , e

and columns 1, 2, ... , Z-1 of A , V is the intersection of

rows 1, 2, ..., e and columns +1, Z+2, ..., f of A , and W

is the intersection of rows e+l, e+2, ... , m and columns

f+l, f+2, ... , n of A . Now since e and f are decomposition
I

numbers for A , we have

(5.31) N(U) + ' - e - No(T)] - (a + l)(e' - e) + p,

where p is a nonnegative integer. Hence

(5.32) No(T) - N(U) - a(e - e) - p

and
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(5.33) N(Z-1. e'. f') + ca -

N(-0e. f) + cie -p - N0(V) - N1 (W).

Thus

(5.34) N(Z-l, e' f) + cie N(Z-l, e, f) + cie,

and equality holds if and only if p = 0, NOMV - 0,.

N l(W) = 0. But p = 0, NomV = 0, N1(W) = 0 if and only if e and

f are decomposition numbers for A

Next consider the case in which el < e and f _<C n.

Then

(5.35) N(Z-1. e ,f)

N(Zle. f) + N1(U) - N%(T) - N0(V) - N1(W).

Here T is the intersection of rows e +1, e +2, .... e and

column Z of Al. U is the intersection of rows e +1, e 1+2# .. e

and columns 1, 2, 0.** Z-1 of A', V is the intersection of

rows 1, 2j .*., e and columns 4+l, 4+20 **as f of At. and W

is the intersection of rows e+l, e+2, ... , m and columns

f+18 f+20 ... , n of A *Now

(5.36) N1(U + Ee - e - NO(T)) - acte - e') + q,

where q is a nonnegative integer satisfying
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t

(5.37) q+ e -e < o.

Hence

(5.38) N(C-i, e , f) + ae' =

N(Z-, e, f) + ae + e' - e + q - No(V) - NI(W).

Thus

(5.39) N(Z-l e £ ) + ae _< N(Z-, e, f) + ae,

I

and equality holds if and only if q = e - e and

N0 (V) - NI(W) = 0, that is, if and only if e and f are

decomposition numbers for A

We now extend the range of f to - f < n. It

suffices to show that if f = 1 1, then

N(Z-,e, f) + ae > N(-1, e , f ) + ae

But this follows without difficulty from the equations

N(i-, e, -) - re+1 + re+2 + ... + rm

and

N~-,e, f' (ot + 1)(m - e') - 6' + e' -z
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This completes the proof of Theorem 5.3.

Theorem 5.4. Let t be the multiplicity of a with

respect to. The 8 of the canonical matrix A' of (5.14)

is T, and

(5.40) 6 - (a + 1) m - - s.

!

Proof. Let A be the canonical matrix of (5.14). Then

I I , I

(5.41) N(Z, e , f ) - N(Z-1, e , f) + sZ- e

But

(5.42) N(i, e, ) - (a + l)(m - e - 6'

and hence

Ie
(5.43) 6 =(a + 1)m - -sz.

Moreover, the matrix AZ of Theorem 4.1 is canonical, so

that 6 - 6.

We conclude this section with a numerical example

illustrating the computation of i(1), T(1), and the
I I

decomposition numbers e , f for a normalized class. Let

Or(R, S) be determined by
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R - (6, 5, 3, 2, 2, 2, 1, i),

S = (4, 4, 4, 4, 4, , i).

The arrays N(2, e, f) + e, for 0 e 8, 2 < f K 7, and

N(3, e, f) + e, for 0 _ e K 8, 3 f £ 7, yield all pertinent

information. They are shown below.

-2 E =3

e 2 3 4 5 6 7 e 3 4 5 6 7

0 22 18 14 lo 9 8 0 22 18 14 13 12

1 17 14 11 8 8 8 1 17 14 11 11 11

2 13 11 9 7 8 9 2 13 11 9 10 11
3 11 10 9 8 10 12 3 11 10 9 11 13

4 10 10 10 10 13 16 4 10 10 10 13 16

5 9 10 11 12 16 20 5 9 10 11 15 19
6 8 10 12 14 19 24 6 8 10 12 17 22

7 8 11 14 17 23 29 7 8 11 14 20 26

8 8 12 16 20 27 34 8 8 12 16 23 30

The recursions

(5.44) N(e, e+i, f) - N(e, es f) - re+1 + f - e

(5.45) N(e, e, f+1) - N(e, e, f) + e -s t i,*

(5.46) N(s+1, e, f) - N(e, e, f) + se+l - e
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are useful in constructing such arrays.

Since

N(2, 2, 5) + 2 - 7 < 8,

N(3, e, f) + e > 8, (O e < 8, 3 , f K 7),

we have Z(i) = 3. Also - 7, corresponding to the unique
I I

decomposition numbers e l 2, f - 5, and hence t(l) - 5.

A canonical matrix in the class is given by

11I 1 0
1 1 0 1 1 0 1

1 1 0 10 0 0

A- 1 0 0 1 0 0 0

0 1 0 0 1 0 0
0 0 1 0 1 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

6. CONSTRUCTION OF CANONICAL MATRICES

We are now in a position to give a simple procedure for

the construction of a canonical matrix A . Before doing so,

we recall some facts about the construction of a (0, 1)-mnatrix

of size m by n having a specified row-sum vector

R = (rI, r 2, ... , rm ) and column-sum vector S - (s1, s2, .,n)

15, 7, 10). Let A be such a matrix. Let R. be a row vector

of rI I's and n - r I O's, and let the l's be inserted in the

positions in which S has its r. largest components. Let R2

be a row vector of r2 l's and n - r2 O's, with the l's inserted
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in the positions in which S - RI has its r2 largest components,

R3 be a row vector having its l's in the positions in which

S - R1 - R2 has its r3 largest components, and so on. Now

we apply interchanges to A and replace row I of A by Ri.

Then we apply interchanges to the transformed matrix and

replace row 2 by R2. These interchanges do not involve Ri.

In this way we transform A by interchanges into a matrix A

composed of the row vectors R1 , R2, ... . But this tells

us that A has row-sum vector R and column-sum vector S, and

hence we have a procedure for constructing a matrix in the

class L'R, S).

We now construct a canonical matrix A of the form (5.14)

in the normalized class MR, S). The theorems of Sec. 5
, I e I t

give formulas for the integers e - Z, 6 = s, , andf in

terms of R and S. The submatrix of A , formed by the
S I

intersection of rows e +1, e +2, ... , m and columns
S I U

e +I, c +2, *.., f , has its row- and column-sum vectors

determined. Hence this submatrix may be inserted.

Let

I I

M 0

(6.1) B- F
0

E

be the m by n - (f' -') submatrix of A formed from A' by
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S I

the deletion of columns E +1, e +2, ... , f . The matrix B
I

comprises the undetermined portion of A . We know the row

sums of BF , and E and the column sums of B and G. Let

(6.2) B- EM G)

denote the first e rows of B and let

(6.3) s - (f '+1, sf' +2, ... sn )

denote the column--sum vector of G . We apply interchanges to
I I I

B and place the l's in column I of G in those rows of B

that possess the sf'+l largest row sums. Now we ignore
II

column I of G of the transformed B matrix and apply

interchanges to column 2 of G . These interchanges do not

disturb column 1 of G and they place the l's in column 2 of

0 in those rows of B that possess, with column 1 of G

excluded, the sf +2 largest row sums. This gives a construction
!I

for G . But then this determines a row-sum vector for G and
I I

hence a row--sum vector for M . The construction for G is

such that each of the components of the row-sum vector of M

exceeds a. In fact, l's are inserted in the columns of G by

a procedure that keeps the size of the row sums of Mv as

uniform as possible. The undetermined portion of B now

consists of the first e columns of B. But we know the row-

sum vector and column-sum vector of this m by E matrix, and
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hence we have a construction for a canonical matrix A

7. SPECIAL CLASSES

Let 0((K, S) denote the normalized class of m by n (0, 1)-

matrices having row-eu vector K - (k, k, ... , k) and column-

sum vector S - (sl, 821 ... , on). Similarly, let O(R, K)

denote the normalized class of m by n (0, l)-matrices having

row-sum vector R - (r1, r2, ... , rm) and column-sum vector

K - (k, k, ... , k). For these special classes, the canonical

form (5.14) is always degenerate.

Theorem 7.1. Every canonical matrix A of form (5.14)
I I

in 0((K, S) has decomposition numbers e = 0, f - n. Every

canonical matrix A of form (5.14) in 0((R, K) has decomposition
I

number f = n.

Proof. Let A of form (5.14) be in the normalized class

O((K, S), and suppose e > 0. Then, comparing first and last
II I I I

row sums of A , we have a + I + f - k < a+f -
I I

This contradiction shows that e' 0,, and hence f = n.

Let A of form (5.14) be in the normalized class &(R, K),

and suppose f < n. Comparing first and last column sums of
I I I I

A yields e 2 k > m - 6 , a contradiction. Thus f - n.

For the class 0(K, S), the lower bound for Z mentioned

following the proof of Theorem 5.2 is always achieved: Z is

the first e such that
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(7.1) 8+ S+ *** + s m

1 2

For in A' of (5.l14) with e' = 0, we have

(7.2) a1+ s 2 + ... + SZ- W + (m

Hence sI+ a 2 + ... + s -i <am and sl+5 2 + 0 + S. > cam.

Moreover, t for the normalized class LC'(K, S) is given by

(7.3) =(a + 1) mn - (s+ s~ + * + s-).
1 2 6
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